
Optimizing Data I/O for LLM Datasets on Remote Storage
Tianle Zhong

tianle.zhong@email.virginia.edu

University of Virginia

Jiechen Zhao

jc.zhao@mail.utoronto.ca

University of Toronto

Xindi Guo

ptk2ks@virginia.edu

University of Virginia

Qiang Su
∗

qiang.su@my.cityu.edu.hk

City University of Hong Kong

Geoffrey Fox
∗

vxj6mb@virginia.edu

University of Virginia

1 INTRODUCTION

Training large languagemodels (LLMs) demands increasingly larger

datasets for optimal performance [13]. In practice, these datasets

may include hundreds of terabytes (TB) or even petabytes of data.

For example, Common Crawl [3] needs approximately 7 petabytes

of data and expands by 200TB to 300TB monthly. Even the dedupli-

cated and cleaned open datasets like the RedPajama-data-v2 dataset

[2] require 270TB of storage space.

While existing solutions like Ray [15, 19] have attempted to lever-

age distributed memory for efficient data pipelines in cluster-scale

training, the capacity of system memory is limited at the O(1TB)

level and cannot accommodate O(100TB) or even larger datasets for

LLM training. Going down along the storage hierarchy, the local

storage at rack-scale provides O(100TB) of storage space which

looks hopeful. However, when considering the scalability, local

storage becomes suboptimal due to their limited extensibility after

deployment. By contrast, remote storage systems provide O(1PB) of

storage space and comparable performance to local storage. Further-

more, remote storage systems can be easily extended and shared

between clusters.

In this project, we showcase a study of the impact of remote
storage for training language models on large datasets. We pro-

pose Reimu, an algorithm-system co-design approach, including

(1) block-level shuffle as an approximation to the expensive full

shuffle with minimal impact on model accuracy; (2) and a light-

weight indexing method without the need to scan the whole dataset

to optimize the I/O efficiency. Our preliminary results show that

Reimu significantly optimizes the dataset initialization time and

throughput, and Reimu has minimal impact on the model accuracy.

2 LLM TRAININGWITH REMOTE STORAGE

2.1 How Datasets are Stored and Read?

Dataset format in storage. We consider the common storage

format in remote storage systems for web-scale datasets. Column-
oriented format [6, 16] has been proposed for online analytical

processing (OLAP) services like Google BigQuery [8] and Amazon

Redshift [1] on web-scale datasets. The format introduces a block-
based design that improves query processing and I/O performance

by enabling efficient columnar compression and encoding schemes.

This paper focuses on the column-oriented format as it has been the

mainstream in use [14] and optimized for remote storage systems

like GFS [7] and HDFS [23].

∗
Qiang Su and Geoffrey Fox are corresponding authors. The Univesity of Virginia

team thanks NSF Grant 2210266 and DOE Grant DE-SC0023452 for partial support.

We acknowledge the excellent work of the Rivanna HPC Cluster team.

Data reading order. Inmodel training data pipelines, data shuffling

is a necessary step to achieve better model accuracy and conver-

gence, which has been proven in both practice and theorem foun-

dation [17]. Shuffling satisfies the need for random data order for

stochastic gradient descent-based learning [18]. There are two cat-

egories of shuffling strategies: (1) offline shuffling data order in the

storage [5]; (2) and runtime changing the reading order [5, 24, 28].

In the context of very large datasets, the time cost and 2× storage

space required by offline shuffling is unacceptable [5, 28]. Hence,

in this work, we only discuss the runtime shuffling strategies.

2.2 I/O Efficiency Problems in LLM Training

In practice, the full shuffling is implemented as random access with-
out replacement [9, 18]. For LLM datasets, this can be viewed as

row-wise random access. However, column-oriented formats usu-

ally do not provide explicit row indices. A common practice is to

leverage memory mapping and scan the entire dataset to create a

mapping between virtual memory addresses and the file on disk. By

using memory mapping, the operating system can load the required

data pages into memory on-demand, even if the total dataset size

exceeds the available RAM.

Slow initialization. The time needed for scanning the entire

dataset to create the row indices is proportional to the dataset size.

We estimate the initialization time on the English subset of Colossal

Clean Crawled Corpus (C4) dataset [21] (referred to as C4-en in

the following). This dataset is common to train large embedding

models [10, 21]. After tokenization with a max sequence length

of 512, the dataset has 386M rows and 2.4TB on disk. The initial-

ization process takes around 5 minutes. This implies that it would

take hours to days for datasets at the petabyte level. The dataset

initialization time cost is non-trivial because, for large cluster-level

training, the GPU failure becomes unavoidable and even frequent

[4, 12, 26]. When restoring the training job, the model checkpoints

need reloading, and the dataset needs reinitialization.

Page fault overheads. When the dataset size is much larger than

the available RAM, accessing random rows of data can lead to

frequent page faults and memory swapping. This happens because

the operating system needs to make room for the requested data

by paging out the least recently used memory pages to disk. When

those pages are needed again, they must be loaded back into RAM,

potentially causing further paging and swapping. This process can

significantly degrade data I/O throughput and overall performance.

Wasted bandwidth.Moreover, due to the block-based design of

the column-oriented format, the minimum reading unit is one block.

For row-wise random access, only one row of each block is likely

needed to generate the batch for feeding the model. Considering the

1



AIOps, Co-located with ASPLOS ’24, April 27, 2024, San Diego, CA Tianle Zhong, Jiechen Zhao, Xindi Guo, Qiang Su∗ , and Geoffrey Fox∗

common block size 1000, the application-level throughput (batch

generation) is merely 0.1%.

Table 2 summarizes the performance impact of the aforemen-

tioned I/O efficiency factors on application-level throughput. We

compare the batch generation throughput between row-wise ran-

dom access and sequential reading. We can see that row-wise ran-

dom access can be up to 47× slower than sequential reading. When

using more GPUs to parallelize training, we expect that the slow

data supply from remote storage due to the I/O inefficiency will

lead to significant GPU idle time. This further makes it challeng-

ing for I/O overhead hiding techniques, such as prefetching, to

work effectively, because I/Os cannot be fully overlapped by GPU

computation.

2.3 Model Accuracy Degradation Problem

To avoid random I/O issues, a window-sliding shuffling method

[24] is often used, where the dataset is streamed to a DRAM buffer

and shuffled in-memory. Although this enables sequential reading

and maximizes I/O performance, the window size is limited by the

available buffer size. Given the size discrepancy between DRAM

and remote storage, the buffer can be very constrained compared to

the dataset size, leading to undesired model accuracy degradation.

3 REIMU: ALGORITHM-SYSTEM CO-DESIGN

In this section, we discuss how to train language models on large

datasets with column-oriented formats with consideration of both

I/O efficiency and model accuracy. Reimu has two design highlights:

block-level shuffle and compute-to-index fetching.

Algorithm: Block-level shuffle. We introduce the block-level

shuffle which shuffles the order of the blocks instead of rows. Our

main idea is that one block is relatively very small considering the

massive block number in total and still can be considered as an

approximation to random access on the whole dataset. Furthermore,

when dataset size (total block number) increases, the block-level

shuffle becomes more similar to the row-wise full shuffle.

However, this may still compromise the shuffle quality compared

to the row-wise full shuffling. To enhance the shuffle quality, after

random blocks are read into the DRAM space, we further perform

an in-memory row-wise shuffle as it is shown in Figure 1. This

approach has been proven to be effective both formally and in prac-

tice for in-database machine learning [28] with relatively simple

and small models and datasets. We share the same formal conver-

gence analysis and in this work we further validate its effectiveness

with training transformer-based text generation models. Different

from [28], the block-based storage is the nature of column-oriented

format so we do not need to manually divide datasets into blocks.

System: Compute-to-index. Instead of indexing data by memory

mapping, we propose a compute-to-index approach to avoid the

long initialization time, frequent page faults and memory swapping.

Without memory mapping, we lost the convenient mapping from

virtual addresses to storage space and have to figure out the data

location at the runtime. Our main idea is that since the block size

is fixed, we can infer the block position based on the block number

of each dataset file. We first collect the block number of each file by

reading their metadata and form a block number offset list against

Compute-
to-index

block

block

Dataset files
block

block

block

DRAM space
Remote storage

Row-wise
shuffle rows

Figure 1: Reimu’s datapath. Different blocks of different colors indicate that

they are from different dataset files.

Strategy Perplexity

Row-wise full shuffle 12.73

Reimu 12.88 (+0.15)

Window-sliding 13.36 (+0.63)

No shuffle 14.32 (+1.59)

Table 1: The converged tiny LLaMa model perplexity on the validation set

of the wikitext-103 dataset with different loading strategies. Lower is better.

Reimu and window-sliding share the same buffer size of 10,000 samples here.

Strategy Init. time Tput (samples/second)

Reimu ∼7 sec. 1893.7

Row-wise full shuffle ∼5 min. 44.4

Window-sliding N/A 2069.9

No shuffle (ideal) N/A 2075.3

Table 2: The initialization time and batch generation throughput comparisons

for loading English subset of the C4 dataset. Batch size is set to 32.

the whole dataset. When randomly indexing a data block, we per-

form a binary search on the block offset list to quickly determine

which file contains the requested block and its local block index

within that file. Once we have the file and local block index, we can

directly access the required data block.

It is worth noting that this approach can also be extended for

row-wise random access.With given global row indices, we perform

a two-stage binary search which first searches from files into blocks

and then into rows.

4 EXPERIMENTS AND FUTUREWORK

Implementations & System settings. We prototype Reimu with

PyArrow 14.0 and build the training pipeline with PyTorch 2.1. The

dataset is stored on a remote storage system with WekaFS [27].

Workloads. We train a tiny LLaMa model [25] (160M) with differ-

ent strategies until convergence on the wikitext-103 dataset. We

measure the throughput of batch generation with the C4-en dataset.

Results. We report the converged model perplexity on the valida-

tion set in Table 1 and the batch generation throughput with a larger

dataset C4-en in Table 2. First, Reimu successfully achieves similar

model perplexity with the full shuffle. Second, when a larger dataset

is employed, Reimu reduces initialization time from 5 minutes to

7 seconds and only introduces minimal computational overheads,

keeping comparable throughput to window-sliding shuffle. Despite

the limited model and dataset sizes used in this study due to compu-

tational constraints, we expect the convergence behavior to remain

consistent across larger model and dataset pairs, based on the pre-

vious shuffle similarity analysis.

2



Optimizing Data I/O for LLM Datasets on Remote Storage AIOps, Co-located with ASPLOS ’24, April 27, 2024, San Diego, CA

Future work. As a general software solution, we can integrate

Reimu with dedicated hardware solutions such as NVIDIA GPUDi-

rect storage [20] for further enhancement. To assess its gains in

large-scale cluster training, we will integrate Reimu with Megatron-

LM [22], benchmarking it across numerous GPUs and real datasets

at the 100TB scale. Additionally, we’re exploring Reimu’s applica-

bility in scenarios like cloud-based data reading [11, 14], where I/O

bandwidth is lower, and incorporating on-the-fly tokenization to

conserve storage while considering the computational costs.

REFERENCES

[1] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh

Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,

Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,

Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-

niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian,

and Doug Terry. 2022. Amazon Redshift Re-invented. In Proceedings of the 2022
International Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD ’22). Association for Computing Machinery, New York, NY, USA, 2205–2217.

https://doi.org/10.1145/3514221.3526045

[2] Together Computer. 2023. RedPajama: an Open Dataset for Training Large

Language Models. https://github.com/togethercomputer/RedPajama-Data

[3] Common Crawl. 2023. Common Crawl Dataset. https://commoncrawl.github.io/

cc-crawl-statistics/. Accessed: March 13, 2024.

[4] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,

Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Mu-

rali Annavaram. 2022. Check-N-Run: a Checkpointing System for Training Deep

Learning Recommendation Models. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA,

929–943. https://www.usenix.org/conference/nsdi22/presentation/eisenman

[5] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards

a unified architecture for in-RDBMS analytics. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (Scottsdale, Arizona,
USA) (SIGMOD ’12). Association for Computing Machinery, New York, NY, USA,

325–336. https://doi.org/10.1145/2213836.2213874

[6] Apache Software Foundation. 2023. Apache Parquet. https://github.com/apache/

parquet-format.

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file

system. In Proceedings of the nineteenth ACM symposium on Operating systems
principles (Bolton Landing, NY, USA) (SOSP ’03). ACM, New York, NY, USA, 29–43.

https://doi.org/10.1145/945445.945450

[8] Google. 2024. Google BigQuery. https://cloud.google.com/bigquery. Accessed:

2024-03-17.

[9] Eduard Gorbunov, Filip Hanzely, and Peter Richtarik. 2020. A Unified Theory of

SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent. In

Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics (Proceedings of Machine Learning Research, Vol. 108), Silvia Chiappa
and Roberto Calandra (Eds.). PMLR, 680–690. https://proceedings.mlr.press/

v108/gorbunov20a.html

[10] Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy

Abel, Mohammad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba

Sturua, Bo Wang, Maximilian Werk, Nan Wang, and Han Xiao. 2024. Jina Em-

beddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents.

arXiv:2310.19923 [cs.CL]

[11] Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, Fariz Rahman, Hrant

Topchyan, David Isayan, Mark McQuade, Mikayel Harutyunyan, Tatevik

Hakobyan, Ivo Stranic, and Davit Buniatyan. 2022. Deep Lake: a Lakehouse

for Deep Learning. arXiv:2209.10785 [cs.DC]

[12] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,

Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin

Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang,

Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang

Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024.

MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs.

arXiv:2402.15627 [cs.LG]

[13] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.

Scaling Laws for Neural Language Models. arXiv:2001.08361 [cs.LG]

[14] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur,

Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu,

Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan Chhablani, Bhavitvya Malik,

Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, Angelina

McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Ma-

tussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor

Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. 2021. Datasets:

A Community Library for Natural Language Processing. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, Heike Adel and Shuming Shi (Eds.). Association for Compu-

tational Linguistics, Online and Punta Cana, Dominican Republic, 175–184.

https://doi.org/10.18653/v1/2021.emnlp-demo.21

[15] Frank Sifei Luan, Stephanie Wang, Samyukta Yagati, Sean Kim, Kenneth Lien,

Isaac Ong, Tony Hong, Sangbin Cho, Eric Liang, and Ion Stoica. 2023. Exoshuf-

fle: An Extensible Shuffle Architecture. In Proceedings of the ACM SIGCOMM
2023 Conference (New York, NY, USA) (ACM SIGCOMM ’23). Association for

Computing Machinery, New York, NY, USA, 564–577. https://doi.org/10.1145/

3603269.3604848

[16] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-

akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis

of Web-Scale Datasets. In Proc. of the 36th Int’l Conf on Very Large Data Bases.
VLDB Endowment, 330–339. http://www.vldb2010.org/accept.htm

[17] QiMeng,Wei Chen, YueWang, Zhi-MingMa, and Tie-Yan Liu. 2019. Convergence

analysis of distributed stochastic gradient descent with shuffling. Neurocomputing
337 (2019), 46–57.

[18] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. 2020. Ran-

dom reshuffling: Simple analysis with vast improvements. Advances in
Neural Information Processing Systems 2020-December (2020). https:

//www.scopus.com/inward/record.uri?eid=2-s2.0-85106134827&partnerID=

40&md5=e08bcb7e24168b446b28aceec3f92b54 Cited by: 31.

[19] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,

and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications.

In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 561–577. https://www.usenix.org/

conference/osdi18/presentation/moritz

[20] NVIDIA. 2023. NVIDIA GPUDirect Storage. https://docs.nvidia.com/gpudirect-

storage/index.html. Accessed: March 13, 2024.

[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits

of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[22] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter

Language Models Using Model Parallelism. arXiv:1909.08053 [cs.CL]

[23] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.

The Hadoop Distributed File System. In 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST). IEEE, 1–10. https://doi.org/10.1109/

MSST.2010.5496972

[24] TensorFlow. 2024. TensorFlow Dataset API. https://www.tensorflow.org/

api_docs/python/tf/data/Dataset. Accessed: March 13, 2024.

[25] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-

laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.

arXiv:2302.13971 [cs.CL]

[26] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S. Eugene

Ng, and Yida Wang. 2023. GEMINI: Fast Failure Recovery in Distributed

Training with In-Memory Checkpoints. In Proceedings of the 29th Sympo-
sium on Operating Systems Principles (<conf-loc>, <city>Koblenz</city>, <coun-
try>Germany</country>, </conf-loc>) (SOSP ’23). Association for ComputingMa-

chinery, New York, NY, USA, 364–381. https://doi.org/10.1145/3600006.3613145

[27] WekaIO. 2023. WekaIO Documentation. https://docs.weka.io/. Accessed: March

13, 2024.

[28] Lijie Xu, Shuang Qiu, Binhang Yuan, Jiawei Jiang, Cedric Renggli, Shaoduo

Gan, Kaan Kara, Guoliang Li, Ji Liu, Wentao Wu, Jieping Ye, and Ce Zhang.

2022. In-Database Machine Learning with CorgiPile: Stochastic Gradient Descent

without Full Data Shuffle. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for

Computing Machinery, New York, NY, USA, 1286–1300. https://doi.org/10.1145/

3514221.3526150

3

https://doi.org/10.1145/3514221.3526045
https://github.com/togethercomputer/RedPajama-Data
https://commoncrawl.github.io/cc-crawl-statistics/
https://commoncrawl.github.io/cc-crawl-statistics/
https://www.usenix.org/conference/nsdi22/presentation/eisenman
https://doi.org/10.1145/2213836.2213874
https://github.com/apache/parquet-format
https://github.com/apache/parquet-format
https://doi.org/10.1145/945445.945450
https://cloud.google.com/bigquery
https://proceedings.mlr.press/v108/gorbunov20a.html
https://proceedings.mlr.press/v108/gorbunov20a.html
https://arxiv.org/abs/2310.19923
https://arxiv.org/abs/2209.10785
https://arxiv.org/abs/2402.15627
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.1145/3603269.3604848
https://doi.org/10.1145/3603269.3604848
http://www.vldb2010.org/accept.htm
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106134827&partnerID=40&md5=e08bcb7e24168b446b28aceec3f92b54
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106134827&partnerID=40&md5=e08bcb7e24168b446b28aceec3f92b54
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106134827&partnerID=40&md5=e08bcb7e24168b446b28aceec3f92b54
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://docs.nvidia.com/gpudirect-storage/index.html
https://docs.nvidia.com/gpudirect-storage/index.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1909.08053
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3600006.3613145
https://docs.weka.io/
https://doi.org/10.1145/3514221.3526150
https://doi.org/10.1145/3514221.3526150

	1 Introduction
	2 LLM Training With Remote Storage
	2.1 How Datasets are Stored and Read?
	2.2 I/O Efficiency Problems in LLM Training
	2.3 Model Accuracy Degradation Problem

	3 Reimu: Algorithm-System Co-Design
	4 Experiments and Future Work
	References

