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1 INTRODUCTION

Training large languagemodels (LLMs) demands increasingly larger

datasets for optimal performance [13]. In practice, these datasets

may include hundreds of terabytes (TB) or even petabytes of data.

For example, Common Crawl [3] needs approximately 7 petabytes

of data and expands by 200TB to 300TB monthly. Even the dedupli-

cated and cleaned open datasets like the RedPajama-data-v2 dataset

[2] require 270TB of storage space.

While existing solutions like Ray [15, 19] have attempted to lever-

age distributed memory for efficient data pipelines in cluster-scale

training, the capacity of system memory is limited at the O(1TB)

level and cannot accommodate O(100TB) or even larger datasets for

LLM training. Going down along the storage hierarchy, the local

storage at rack-scale provides O(100TB) of storage space which

looks hopeful. However, when considering the scalability, local

storage becomes suboptimal due to their limited extensibility after

deployment. By contrast, remote storage systems provide O(1PB) of

storage space and comparable performance to local storage. Further-

more, remote storage systems can be easily extended and shared

between clusters.

In this project, we showcase a study of the impact of remote
storage for training language models on large datasets. We pro-

pose Reimu, an algorithm-system co-design approach, including

(1) block-level shuffle as an approximation to the expensive full

shuffle with minimal impact on model accuracy; (2) and a light-

weight indexing method without the need to scan the whole dataset

to optimize the I/O efficiency. Our preliminary results show that

Reimu significantly optimizes the dataset initialization time and

throughput, and Reimu has minimal impact on the model accuracy.

2 LLM TRAININGWITH REMOTE STORAGE

2.1 How Datasets are Stored and Read?

Dataset format in storage. We consider the common storage

format in remote storage systems for web-scale datasets. Column-
oriented format [6, 16] has been proposed for online analytical

processing (OLAP) services like Google BigQuery [8] and Amazon

Redshift [1] on web-scale datasets. The format introduces a block-
based design that improves query processing and I/O performance

by enabling efficient columnar compression and encoding schemes.

This paper focuses on the column-oriented format as it has been the

mainstream in use [14] and optimized for remote storage systems

like GFS [7] and HDFS [23].

∗
Qiang Su and Geoffrey Fox are corresponding authors. The Univesity of Virginia

team thanks NSF Grant 2210266 and DOE Grant DE-SC0023452 for partial support.

We acknowledge the excellent work of the Rivanna HPC Cluster team.

Data reading order. Inmodel training data pipelines, data shuffling

is a necessary step to achieve better model accuracy and conver-

gence, which has been proven in both practice and theorem foun-

dation [17]. Shuffling satisfies the need for random data order for

stochastic gradient descent-based learning [18]. There are two cat-

egories of shuffling strategies: (1) offline shuffling data order in the

storage [5]; (2) and runtime changing the reading order [5, 24, 28].

In the context of very large datasets, the time cost and 2× storage

space required by offline shuffling is unacceptable [5, 28]. Hence,

in this work, we only discuss the runtime shuffling strategies.

2.2 I/O Efficiency Problems in LLM Training

In practice, the full shuffling is implemented as random access with-
out replacement [9, 18]. For LLM datasets, this can be viewed as

row-wise random access. However, column-oriented formats usu-

ally do not provide explicit row indices. A common practice is to

leverage memory mapping and scan the entire dataset to create a

mapping between virtual memory addresses and the file on disk. By

using memory mapping, the operating system can load the required

data pages into memory on-demand, even if the total dataset size

exceeds the available RAM.

Slow initialization. The time needed for scanning the entire

dataset to create the row indices is proportional to the dataset size.

We estimate the initialization time on the English subset of Colossal

Clean Crawled Corpus (C4) dataset [21] (referred to as C4-en in

the following). This dataset is common to train large embedding

models [10, 21]. After tokenization with a max sequence length

of 512, the dataset has 386M rows and 2.4TB on disk. The initial-

ization process takes around 5 minutes. This implies that it would

take hours to days for datasets at the petabyte level. The dataset

initialization time cost is non-trivial because, for large cluster-level

training, the GPU failure becomes unavoidable and even frequent

[4, 12, 26]. When restoring the training job, the model checkpoints

need reloading, and the dataset needs reinitialization.

Page fault overheads. When the dataset size is much larger than

the available RAM, accessing random rows of data can lead to

frequent page faults and memory swapping. This happens because

the operating system needs to make room for the requested data

by paging out the least recently used memory pages to disk. When

those pages are needed again, they must be loaded back into RAM,

potentially causing further paging and swapping. This process can

significantly degrade data I/O throughput and overall performance.

Wasted bandwidth.Moreover, due to the block-based design of

the column-oriented format, the minimum reading unit is one block.

For row-wise random access, only one row of each block is likely

needed to generate the batch for feeding the model. Considering the
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common block size 1000, the application-level throughput (batch

generation) is merely 0.1%.

Table 2 summarizes the performance impact of the aforemen-

tioned I/O efficiency factors on application-level throughput. We

compare the batch generation throughput between row-wise ran-

dom access and sequential reading. We can see that row-wise ran-

dom access can be up to 47× slower than sequential reading. When

using more GPUs to parallelize training, we expect that the slow

data supply from remote storage due to the I/O inefficiency will

lead to significant GPU idle time. This further makes it challeng-

ing for I/O overhead hiding techniques, such as prefetching, to

work effectively, because I/Os cannot be fully overlapped by GPU

computation.

2.3 Model Accuracy Degradation Problem

To avoid random I/O issues, a window-sliding shuffling method

[24] is often used, where the dataset is streamed to a DRAM buffer

and shuffled in-memory. Although this enables sequential reading

and maximizes I/O performance, the window size is limited by the

available buffer size. Given the size discrepancy between DRAM

and remote storage, the buffer can be very constrained compared to

the dataset size, leading to undesired model accuracy degradation.

3 REIMU: ALGORITHM-SYSTEM CO-DESIGN

In this section, we discuss how to train language models on large

datasets with column-oriented formats with consideration of both

I/O efficiency and model accuracy. Reimu has two design highlights:

block-level shuffle and compute-to-index fetching.

Algorithm: Block-level shuffle. We introduce the block-level

shuffle which shuffles the order of the blocks instead of rows. Our

main idea is that one block is relatively very small considering the

massive block number in total and still can be considered as an

approximation to random access on the whole dataset. Furthermore,

when dataset size (total block number) increases, the block-level

shuffle becomes more similar to the row-wise full shuffle.

However, this may still compromise the shuffle quality compared

to the row-wise full shuffling. To enhance the shuffle quality, after

random blocks are read into the DRAM space, we further perform

an in-memory row-wise shuffle as it is shown in Figure 1. This

approach has been proven to be effective both formally and in prac-

tice for in-database machine learning [28] with relatively simple

and small models and datasets. We share the same formal conver-

gence analysis and in this work we further validate its effectiveness

with training transformer-based text generation models. Different

from [28], the block-based storage is the nature of column-oriented

format so we do not need to manually divide datasets into blocks.

System: Compute-to-index. Instead of indexing data by memory

mapping, we propose a compute-to-index approach to avoid the

long initialization time, frequent page faults and memory swapping.

Without memory mapping, we lost the convenient mapping from

virtual addresses to storage space and have to figure out the data

location at the runtime. Our main idea is that since the block size

is fixed, we can infer the block position based on the block number

of each dataset file. We first collect the block number of each file by

reading their metadata and form a block number offset list against

Compute-
to-index

block

block

Dataset files
block

block

block

DRAM space
Remote storage

Row-wise
shuffle rows

Figure 1: Reimu’s datapath. Different blocks of different colors indicate that

they are from different dataset files.

Strategy Perplexity

Row-wise full shuffle 12.73

Reimu 12.88 (+0.15)

Window-sliding 13.36 (+0.63)

No shuffle 14.32 (+1.59)

Table 1: The converged tiny LLaMa model perplexity on the validation set

of the wikitext-103 dataset with different loading strategies. Lower is better.

Reimu and window-sliding share the same buffer size of 10,000 samples here.

Strategy Init. time Tput (samples/second)

Reimu ∼7 sec. 1893.7

Row-wise full shuffle ∼5 min. 44.4

Window-sliding N/A 2069.9

No shuffle (ideal) N/A 2075.3

Table 2: The initialization time and batch generation throughput comparisons

for loading English subset of the C4 dataset. Batch size is set to 32.

the whole dataset. When randomly indexing a data block, we per-

form a binary search on the block offset list to quickly determine

which file contains the requested block and its local block index

within that file. Once we have the file and local block index, we can

directly access the required data block.

It is worth noting that this approach can also be extended for

row-wise random access.With given global row indices, we perform

a two-stage binary search which first searches from files into blocks

and then into rows.

4 EXPERIMENTS AND FUTUREWORK

Implementations & System settings. We prototype Reimu with

PyArrow 14.0 and build the training pipeline with PyTorch 2.1. The

dataset is stored on a remote storage system with WekaFS [27].

Workloads. We train a tiny LLaMa model [25] (160M) with differ-

ent strategies until convergence on the wikitext-103 dataset. We

measure the throughput of batch generation with the C4-en dataset.

Results. We report the converged model perplexity on the valida-

tion set in Table 1 and the batch generation throughput with a larger

dataset C4-en in Table 2. First, Reimu successfully achieves similar

model perplexity with the full shuffle. Second, when a larger dataset

is employed, Reimu reduces initialization time from 5 minutes to

7 seconds and only introduces minimal computational overheads,

keeping comparable throughput to window-sliding shuffle. Despite

the limited model and dataset sizes used in this study due to compu-

tational constraints, we expect the convergence behavior to remain

consistent across larger model and dataset pairs, based on the pre-

vious shuffle similarity analysis.

2



Optimizing Data I/O for LLM Datasets on Remote Storage AIOps, Co-located with ASPLOS ’24, April 27, 2024, San Diego, CA

Future work. As a general software solution, we can integrate

Reimu with dedicated hardware solutions such as NVIDIA GPUDi-

rect storage [20] for further enhancement. To assess its gains in

large-scale cluster training, we will integrate Reimuwith Megatron-

LM [22], benchmarking it across numerous GPUs and real datasets

at the 100TB scale. Additionally, we’re exploring Reimu’s applica-

bility in scenarios like cloud-based data reading [11, 14], where I/O

bandwidth is lower, and incorporating on-the-fly tokenization to

conserve storage while considering the computational costs.
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