
Youmu: Efficient Columnar Data Pipeline for LLM Training
Tianle Zhong 1 Jiechen Zhao 2 Qiang Su 3 Geoffrey Fox 1

1University of Virginia 2University of Toronto 3The Chinese University of Hong Kong

What Format Is Your LLM Dataset?

Large language model (LLM) training datasets are web-scale.

PiB-level raw data; TiB-level cleaned data.

Massive data preprocessing.

Needs to reside on costly high performance storage.

Many training frameworks and datasets are using JSONL, but we know that it is not an ideal

choice for managing such amount of data.

Data Preparation in Parquet; Why Not Training?

x0

x1

y0

y1

Row Group 0

Row Group 1

Column Chunk x0

Column Chunk y0

Column Chunk x1

Column Chunk y1

column x column y
page 0

page 1

page 0

page 1

page 0

page 1

page 0

page 1

(a) Logical Representation (b) Physical Layout

Figure 1. Parquet logical and physical layouts.

A lot of data cleaning & preparation tools use Parquet, which is designed for efficiently processing

web-scale datasets.

With Parquet, data preparation reuses existing data infrastructure for analytical workload.

Designed for scan-based operations.

Optimized for block storage.

High compression rate to reduce storage cost.

However, Parquet is inefficient with random access, a key procedure for data shuffling to ensure

model accuracy.

Costly Pit-stops between Preparation and Training

Columnar Dataset

Pit-Stop: Transforming
formats of TB-scale dataset

Training Process

Columnar Dataset

Conversion

Training Process

Direct Fine-grained
Data Access

(a) Conventional (a) Youmu

Extra
Storage/DRAM Shuffle Process

The current practice is to convert & pre-shuffle columnar data into other formats like JSONL.

3× more storage capacity needed on costly performant storage.

Break single truth of data.

Additional human efforts to keep up with ever evolving datasets with new data and

preprocessing refinement.

Issues with Existing Solutions and Our Goals

Figure 2. Mmap file I/O

0 1 2 3 4 5 6

1, 2 3,54,0

Data on the disk 97 8

Batch 0 Batch 1 Batch 2

0 1 2 3 4DRAM space

Buffer size

Read

Shuffle

1 2 4 0 3DRAM space

5

5

Figure 3. Streaming shuffle.

Distributed memory like Ray and Spark
High memory footprint and complexity.

Memory contention with other key functionalities like model checkpointing.

Disk-backed memory mapping (HuggingFace Datasets).
Unsatisfactory throughput due to thrashing (page faults).

Streaming I/O-based local shuffle.
Obvious model accuracy loss due to limited shuffle quality.

Our Goals

We aim to stay with one consistent columnar format for training data pipeline, and achieves

Controlled DRAM footprint (against distributed memory).
provide memory resilience for other critical functionalities like tensor offloading and model checkpointing.

Sufficient throughput (against MMap I/O) to avoid data starvation for GPU utilization.

High shuffle quality (against local shuffle) to ensure model accuracy.

Our Observations

Dataset

Cached in Memory On Disk

Collect Data Batch

Bottleneck

Figure 4. Disk I/O remains as bottleneck

Figure 5. A lot of I/O bandwidth is wasted due to the granularity gap.

Marginal benefits of caching unless the dataset fully cached, considering that access to the

same row is exactly once per epoch.

Significant granularity gap: Fine-grained shuffling vs. Coarse-grained columnar chunk I/O
Consume rows but have to read chunks, resulting in extremely low effective bandwidth.

In other words, a lot of data is fed into CPU but never used by GPU.

Youmu Overview

Dataset Interface

Dataset FilesStorage

Global Page
Index Store Page Fetcher

Index
Translator Page DecoderYoumu

PageMetadata

 Control Path Data Path

Index Buffer

Training Tasks

App

API

Figure 6. Youmu system overview.

Design highlights:

No cache, only buffer.
From Observation 1.

Fine-grained page-level I/O.
From Observation 2.

Practical compatibility.
Directly works with widely adopted

Parquet.

Youmu Design

Page 0

Page 1

Page N

Column Chunk

Column Chunk

Default Parquet
I/O Granularity

Youmu Page-level
I/O Granularity

Figure 7. Page-level I/O

Page Addr

Page Addr

Page Addr

Page Addr

Page Addr

Page Addr

PageIdx 0

Col_ck 0 Col_ck 1 Col_ck 2

PageIdx 1

PageOffset_ColCk x x+y x+y+z

PageOffset_File[0] x+y+z
File 0

File 1

Figure 8. A lot of I/O bandwidth is wasted due to the granularity gap.

Refill
threshold

In-buffer
data

Fetch
page

New
page

Buffer
shuffle

Figure 9. Aggressive buffer shuffle.

Aggressive Buffer Shuffle

Based on the fact: page size < buffer size.

Shuffle rows in buffer upon the arrival of each new

page.

Better shuffle quality than standard buffer shuffle at

initialization.

Page-level I/O Granularity

Friendly I/O size for SSD.

Many pages to shuffle.

Improved I/O goodput.

Global Page Index

A 3-dim index across file, column chunk and page.

Lightweight initialization since only metadata needed.

Layered binary search-based index translation.

Implementation

Rust runtime: Based on official Rust implementation of Apache Parquet and Arrow.

Python APIs to be directly integrated with PyTorch Dataset interface.

Zero-copy conversion to various dataframe and tensor formats enabled by Arrow memory model ecosystem.

Support full shuffle by extracting a random row from retrieved page.

Evaluation

50 60 70 80 90 100 110 120
Steps (k)

20

21

22

23

Pe
rp

le
xi

ty

20.1420.09
20.2620.37

Row
Page (10KB)
Page (1MB)
Streaming

Figure 10. Perplexity against training steps

Key Take-away

A small page (10KB) achieves competitive

quality to row shuffling.

A big page (1MB) still outperforms

streaming shuffle.

TL;DR

Youmu can achieve sufficiently low latency to

saturate GPU while keeping very low memory

overheads

240 470 710 960 1500
Dataset Sizes (Billion Tokens)

3050
100
150

No
de

 M
em

. (
GB

)

OOD OOD

RayData (full)
RayData (chunk)

Youmu (page)
Youmu (full)

Figure 11. Memory footprint per node against dataset

sizes on 16 nodes.

2 4 8 16
Number of Nodes

0.0010.003

0.4
310

Av
g.

 S
te

p
La

te
nc

y
(s

)

GPU No Data Waiting Threshold (1.9s)

Youmu (page)
RayData (chunk)
RayData (full)

Youmu (full)
HuggingFace

Figure 12. Iteration batch latency against a 200B dataset.

https://mlsys.org/virtual/2025/poster/3272 The Eighth Annual Conference on Machine Learning and Systems (MLSys 2025), Santa Clara, CA tianle.zhong@email.virginia.edu

https://mlsys.org/virtual/2025/poster/3272
tianle.zhong@email.virginia.edu

